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ABSTRACT
With the aim of supporting instructional designers in setting up
collaborative learning activities in MOOCs, this paper derives
prediction models for student participation in group discus-
sions. The salient feature of these models is that they are
built using only data prior to the learning activity, and can
thus provide actionable predictions, as opposed to post-hoc
approaches common in the MOOC literature. Some learning
design scenarios that make use of this actionable information
are illustrated.
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INTRODUCTION
Massive Open Online Courses (MOOCs) offer quality online
learning materials, reaching out to a wide audience. Neverthe-
less, the massiveness of the learner populations has reinforced
the use of cognitivist-behaviorist pedagogies [9], which rely
highly on information transmission and do not promote social
learning. Although discussion forums and peer reviews are
commonly incorporated to foster collaboration, being mostly
implemented in an unstructured way with limited instructor
facilitation, their effect on peer interaction and social learn-
ing has been limited [11]. Consequently, peer interaction and
support barely exist in MOOCs [9].

Recently, collaborative learning within small teams sharing a
common learning goal has been tested in MOOCs to promote
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engagement and achievement of learners [15, 12]. In the
research on supporting collaborative learning in MOOCs, most
works have focused on offering technological solutions to
perform group formation automatically [12, 15]. While they
are valuable in demonstrating the effect of different criteria
in different contexts, they do not support instructors to make
informed decisions, and thus they continue to set group size
and requirements based on their previous teaching experiences
in formal non-massive online courses [12]. The prediction of
student behavior has also been researched to estimate dropout,
engagement and, sometimes, potential for collaboration, but
most of the prediction literature uses post-hoc models that do
not produce actionable information [6].

This paper presents the results of a work-in-progress that,
using data gathered from two MOOCs, explored the use of
transfer learning techniques, namely in-situ learning and trans-
fer across courses [3]. These techniques allow generating
predictions before the target label is produced (i.e., group
discussion is completed) so that they are actionable for the
upcoming activity. The predictions can thus be operational-
ized by instructors in several ways such as adjusting the group
size, defining different roles (e.g., coordinator, spokesman),
deciding on the workload on groups, etc.

BACKGROUND

Collaborative Learning in MOOCs
Though collaborative learning offers many benefits to stu-
dents [4], its implementation in MOOCs is challenging. For
example, manual group formation, carried out by the instruc-
tors, is not feasible. Moreover, the large variety within the
MOOC learners’ characteristics (e.g., learning preferences,
educational background) and goals (e.g., aiming for the cer-
tificate, only intending to get familiar with a specific topic)
can also hinder collaboration in groups [1], but instructor sup-
port and interaction with students is unfeasible at a massive
scale [9]. Therefore, in most MOOCs, open discussions and
peer reviews with neither a specific structure nor frequent in-
structor interference have been used optimistically to create
collaboration [11].
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To support instructional designers in introducing collaboration,
the literature has explored algorithmic approaches to group for-
mation that can outperform random pairing. It has been found
that groups formed by clustering of students using certain cri-
teria yield less dropouts [15] and more social interactions [12]
compared to the groups formed by random matching. [13]
set up groups using theory-driven team formation principles
(e.g., heterogeneity in knowledge supports creativity in the
group), achieving more productive engagement. Nevertheless,
all these approaches for collaborative learning support are con-
figured using instructional design decisions taken beforehand:
instructors are not provided with early actionable informa-
tion useful to make design decisions about the collaborative
activity while the course is running

MOOC Research on Generating Actionable Predictions
We identify two important gaps in the MOOC prediction lit-
erature. First, the prediction research in MOOC contexts so
far has mainly focused on dropout prediction [8], overlook-
ing other essential learning behaviors such as engagement in
collaborative learning activities. Machine learning predictions
about the participation levels of students in collaborative ac-
tivities may be actionable by instructors in several ways, such
as determining an appropriate group size or determining the
phases of the collaboration.

Second, existing models afford very limited use by instructors
in real-world practice. According to a recent literature review
[8], fewer than 10% of the surveyed proposals are feasible for
real world as they are usually built on posterior data (which
is available only after the target action is realized). Two alter-
native techniques to post-hoc approaches are transfer across
courses (which involves the use of a model trained with past
course data to make predictions in an ongoing course), and in-
situ learning (in which student engagement in a past activity is
used to generate proxy labels for training in the same course).
So far, the research has noted promising results regarding the
use of transfer learning for producing accurate predictions
that are actionable for real-world use [5, 14, 2]. However, to
the best of our knowledge, there are no previous studies on
producing actionable information for supporting the design of
collaborative learning in MOOCs.

THE STUDY
In this work, we applied transfer across courses and in-situ
learning using data from two runs of the same MOOC to gener-
ate actionable predictions regarding students’ participation in
group discussions. The context of the study and the methods
to build and assess the predictive models are described next.

Context
The context was a MOOC about translation of business terms
between English and Spanish, offered in the Canvas Network
MOOC platform, lasting seven weeks. Data from two runs of
the course, in 2017 and 2018, were used in this research. In the
first run, 1031 students enrolled, 668 of whom answered an
initial questionnaire, and finally 161 completed the mandatory
activity of the last week (hence, we consider the rest to have
dropped out). The figures for the 2018 run were 866, 648 and
186, respectively.

2017 2018
1st activ. 2nd activ. 1st activ. 2nd activ.

groups 160 150 108 118
active students 151 145 189 174
passive students 244 265 376 404

Table 1. Group activity information for both courses

Two collaborative activities (one in the fourth week and an-
other in the sixth week) were designed, involving writing a
report in teams that includes listing some terms extracted along
with translations, providing the rationales for the terms, and
citing the resources used. The instructional designers decided
that they would be carried in groups of six. Table 1 shows the
number of collaborative groups, and active (who did post in
the discussion group) and passive students (who did not) in
these groups. It can be seen that passive students are many
more than active ones. Also there were less active students in
the second activities.

Method
The prediction task in this study is to identify if students would
post in their group discussions or not. Below, the training
techniques applied, features generated, and the assessment
metric of model performance are described.

Model Training Techniques
Three techniques were applied to build predictive models:
post-hoc, in-situ learning, and transfer across courses. Logistic
regression (in the Python implementation available in the Scikit
Learn framework) was used as the classifier as it has shown to
be effective in other tasks in the MOOC literature [14, 2].

To build post-hoc models, the dataset includes the labels (i.e.
the student did or did not post) which are only available after
the collaborative activity has finished. 10-fold cross validation
is then used to train and test the model (i.e. the data is split
in 10 folds; 9 are used for training and 1 for test; the process
repeated for each combination of folds, and results averaged).
This post-hoc model represents an optimistic reference point
to compare the accuracies of the other methods [3, 14, 2].

In-situ learning is a transfer learning technique that involves
creating a proxy label based on student engagement in a past
learning activity and training a model using the data with
proxy labels [3]. In this way, a trained model could be used
to make a prediction about student engagement or success
for an upcoming learning activity. In the current work, we
apply in-situ learning to make predictions for both collabora-
tive activities but using a different proxy label in each activity.
For the first collaborative task, proxy labels were generated
according to student participation in a different learning activ-
ity that was completed one week before. This activity was a
mandatory assignment that involved analysis and revision of a
given financial text. For the second collaborative task, student
participation in group discussions of the first collaborative
activity was used to create proxy labels. Note that this allows
to train models before the collaborative learning starts, so that
predictions can be operationalized by the instructor.



Feature Description

x1 Total number of discussion posts
x2 Total number of quiz attempts
x3 Total quiz score
x4 Total time spent on quizzes
x5 Total number of assignment submissions
x6 Total page views
x7 Total views on introduction pages
x8 Total views on lecture pages
x9 Total views on discussion forums
x10 Total views on quiz pages
x11 Total views on assignment pages
x12 Total views on review-video pages

Table 2. Features used to train the predictive models.

Course Training approach 1st activity 2nd activity
AUC κ AUC κ

2017 post hoc 0.85 0.70 0.93 0.84
in-situ learning 0.84 0.69 0.92 0.82

2018
post hoc 0.88 0.72 0.96 0.88
in-situ learning 0.88 0.71 0.93 0.80
transfer across course 0.87 0.70 0.94 0.82

Table 3. The AUC and Cohen’s κ scores of prediction accuracies.

Transfer across courses involves the use of past course data
to train models that can be applied in a future course to make
predictions [3]. In the current study, two models (one for each
collaborative activity) were trained using the data from the
course taught in 2017. Then, these models were applied in the
2018 version to predict student engagement in the first and the
second collaborative activities respectively.

Feature Generation
To build the prediction models, 12 features were generated
as listed in Table 2. These features account for student en-
gagement in various course activities such as quizzes and
discussions. These features are found to have predictive power
in related tasks in the MOOC literature [2, 6].

Model Assessment
The performance was measured using area under the curve
(AUC) and Cohen’s Kappa, which are metrics ofen used for
imbalanced class distributions [10]. AUC scores above 0.8 or
κ above 0.75 are considered from very good to excellent.

RESULTS AND USAGE SCENARIOS
In the first course, four models were built, using the post-
hoc and in-situ approaches for each of the two collaborative
learning activities. In the second run six models were derived,
using post-hoc, in-situ and and transfer across courses, for the
two activities. Their performances are given in Table 3.

In both runs of the course, in-situ models yielded accurate
results in predicting student participation in collaborative ac-
tivities, with scores very close to the post-hoc models (an
optimistic approach unfeasible in real-world [3]). Similar
results were reported in the literature for predicting dropout

Feature 2017 2018
1st activ. 2nd activ. 1st activ. 2nd activ.

x1 0.00 0.13 0.00 0.00
x2 0.00 0.00 -0.05 0.00
x3 0.45 0.31 1.33 0.19
x4 -0.05 -0.19 0.00 -0.05
x5 0.76 1.06 -0.42 1.42
x6 0.00 0.00 0.00 0.00
x7 -0.07 0.00 -0.00 -0.35
x8 0.00 0.02 0.00 0.00
x9 0.20 0.02 0.00 0.00
x10 0.00 0.00 -0.39 0.00
x11 1.21 1.57 1.97 3.05
x12 0.00 0.00 0.36 0.00

Table 4. Coefficients of the features in the decision function (from Scikit
LogisticRegression) of the four in-situ predictive models (transfer
across courses uses the 2017 models to predict in 2018).

1st activity 2nd activity

At least 2 46/108 53/118
At least 3 60/108 68/118
At least 4 64/108 77/118

Table 5. Number of at-risk groups in both collaborative activities based
on three different thresholds.

[14] and video or exercise based engagement [2]. Moreover,
the transfer across courses technique also reached accurate
predictions for the second run of the course, in line with the
results reported in [14]. These results show that transfer learn-
ing techniques can be used to train machine learning models
without labels yet unavailable. All trained models performed
better in the second collaborative activity, which can be due
to the fact that MOOC participants with inconsistent behavior
and activities (whose behavior is more difficult to predict) are
likely to drop out of the course in later phases. Another poten-
tial explanation of this increase in the case of in-situ models
comes from the fact that the behavior in the first collaborative
activity makes a better proxy label for the second.

In order to better understand the derived models, their re-
gression coefficients are presented in Table 4, showing that
students with better quiz scores, more submission page views
and more assignments submissions were more likely to post in
collaborative activities, i.e. in general more engaged students
will collaborate more.

In summary, these models achieve accuracies similar to post-
hoc models, but with the benefit of being timely available. It
is then worth debating how these actionable predictions could
be used by instructors when setting up collaborative learning
activities.

Identifying groups at risk of disengagement
The developed models can serve to identify beforehand which
student groups are at risk of disengagement, so that instructors
can act to prevent their possible failure in collaboration [12].
Students’ individual probabilities of participation can serve to



estimate the group behavior, and a threshold (i.e. at least n stu-
dents should post in groups of N) can determine which groups
are at risk. To illustrate this idea in practice, for the second
run of the MOOC we used the in-situ models to compute the
probabilities of at least n = 2,3,4 students posting in groups
of N = 6, and considered those with probability lower than
0.5 to be at risk.

The results collected in Table 5 show a high number of at-risk
groups. This information could be actioned in several ways:
if there were very few groups in this condition, instructors
could reassign students to improve chances in all groups; if,
like here, there are many at-risk groups, instructors may need
to act differently, as discussed next.

Changing the activity requirements and timeline
Instructors may want to relax the activity requirements in a
way that the expected participation matches the demanded
workload. For example, in the current MOOC context, groups
were formed with six members to work together to prepare a
comprehensive report that includes 20 terms with translations,
resources used, and the rationale for the chosen terms. With
this information, some of this requirements could be lowered
(e.g. including less terms or making explanations voluntary).
This information also affects decisions of the timeline. In
this course, the instructors made the reflection that one week
should be enough for the task with six member groups, but if
many groups are in risk, the deadline could be postponed.

CONCLUSIONS AND FUTURE RESEARCH
There is a literature body on predicting student performance
in MOOCs, but mostly using post-hoc models and focusing
on individual behavior. This paper has presented prediction
models built using techniques that produce actionable infor-
mation affecting collaborative learning activities in MOOCs.
The results are promising, with accuracies similar to post-hoc
models and many potential opportunities of application. The
study needs to be broadened in several ways: building mod-
els on data of other courses; rebalancing the output classes
and analyzing the influence of this, as [7]; testing these mod-
els in real educational practice; and refining them according
to the lessons learned to provide more useful indicators (e.g.
adding more social features, or producing a ranked prediction
–intensive, moderate, little or no collaborator–).
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